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Abstract Computer experiments require space-filling designs with good low-dimensional projection properties.
Strong orthogonal arrays are a type of space-filling design that provides better stratifications in low dimensions
than ordinary orthogonal arrays. In this paper, we address the problem of constructing strong orthogonal
arrays and column-orthogonal strong orthogonal arrays of strength two plus. Existing methods typically rely on
regular designs or specific nonregular designs as base orthogonal arrays, limiting the sizes of the final designs.
Instead, we propose two general methods that are easy to implement and applicable to a wide range of base
orthogonal arrays. These methods produce space-filling designs that can accommodate a large number of factors,
provide significant flexibility in terms of run sizes, and possess appealing low-dimensional projection properties.
Therefore, these designs are ideal for computer experiments.
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1 Introduction

Computer experiments often involve a large number of factors, but only a few of them (which are unknown
before the experiment) may be active, according to the effect sparsity principle. Therefore, computer
experiments call for space-filling designs that have good projections to all the low-dimensional subspaces
of the factors [6,21]. One popular method of obtaining such designs is through orthogonal arrays, which
offer guaranteed space-filling properties in low-dimensional projections. McKay et al. [16] initiated this
line of research by introducing Latin hypercubes, which are essentially orthogonal arrays of strength one
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and provide the maximum uniformity in all univariate projections. Owen [18] and Tang [29] extended this
idea by proposing orthogonal array-based designs that achieve stratifications in t-dimensional projections
if an orthogonal array of strength t is employed.

He and Tang [9] introduced strong orthogonal arrays, also known as stratum orthogonal arrays [7],
which are a new type of design that can achieve finer stratifications than ordinary orthogonal arrays of the
same strength. Since then, strong orthogonal arrays have attracted considerable interest from researchers
[8, 10, 15, 25, 31, 32], studying their characterizations and new types. Besides their stratification benefits,
strong orthogonal arrays also perform well under other space-filling criteria [3, 27, 30] and have various
applications, including the optimization of braking performance for freight trains [17] and hyperparameter
tuning in deep neural networks [24].

Among the various types of strong orthogonal arrays, those of strength 2+ proposed by He et al. [8]
are highly practical. These arrays possess the same two-dimensional space-filling property as strength-
three strong orthogonal arrays but require significantly fewer runs. He et al. [8] used regular designs
to construct these arrays, which limited their run sizes to prime powers. Nonregular designs have also
been employed for constructing such arrays [4, 5, 13], but their methods lack generality as they rely on
specific orthogonal arrays or computer searches. In computer experiments, column-orthogonality is an
important design criterion since it enables uncorrelated estimations of linear main effects of factors and
facilitates space-filling designs under Gaussian process modeling [1]. Zhou and Tang [32] developed strong
orthogonal arrays of strength 2+ with column-orthogonality, allowing for flexible run sizes. However, these
designs often have a limited number of factors when the number of levels exceeds four (refer to Table 5
in Section 4).

In this paper, we employ a broad class of orthogonal arrays as base orthogonal arrays, which are
generated by small regular orthogonal arrays and difference schemes. Leveraging these orthogonal
arrays, we introduce two general methods for constructing strength-2+ strong orthogonal arrays. Our
methods are capable of generating numerous new strong orthogonal arrays and column-orthogonal
strong orthogonal arrays. The proposed constructions encompass the run sizes of designs previously
developed through existing methods for cases where the number of levels exceeds four, while significantly
increasing the number of factors. Moreover, we demonstrate that under mild conditions, the constructed
strong orthogonal arrays are complete, meaning that no additional columns can be added to maintain
strength 2+. Simultaneously, we propose using the three-dimensional projection properties to further
compare and screen the two types of strength-2+ designs and introduce two useful theorems that can
assist in achieving this.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and background
and give two examples of strong orthogonal arrays constructed from our methods. The general methods
for constructing strong orthogonal arrays and column-orthogonal strong orthogonal arrays of strength
2+ are presented in Sections 3 and 4, respectively. In Section 5, we investigate the three-dimensional
projections of the constructed strong orthogonal arrays. Finally, we conclude the paper with a discussion
of our findings in Section 6. All the proofs and some small difference schemes used in our constructions
can be found in the appendices.

2 Preliminaries and examples
2.1 Notations and definitions

An orthogonal array of N runs, m factors and strength t, denoted by OA(N, m, s1 × · · · × sm, t), is an
N ×m matrix whose entries are taken from a set of sj elements in the j-th column, such that all possible
combinations appear with the same frequency in any of its N × t submatrices. If s1 = · · · = sm = s, the
array is called symmetrical, and a simpler notation OA(N,m, s, t) or OA(t) is used; otherwise it is called
asymmetrical. A necessary condition for an OA(N,m, s, 2) to exist is N − 1 ⩾ m(s − 1), and the array
is said to be saturated if the equality holds. [12] is an excellent general reference for orthogonal arrays.

Let GF(s) = {α0, α1, . . . , αs−1} denote a Galois field of order s, where s is a prime power, α0 = 0,
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α1 = α is a primitive element of GF(s), and α2 = α2, . . . , αs−1 = αs−1 = 1. When an OA(N,m, s, t) has
its entries from GF(s), it is called a regular design if its rows form a linear subspace of the full factorial
sm design over GF(s) or a coset. A saturated regular design can be generated by the Rao-Hamming
construction [12, Subsection 3.4], which works as follows. Let l1, . . . , lr where r = (sn − 1)/(s− 1) be all
the vectors in [GF(s)]n whose first nonzero element is 1. Take all the linear combinations of the rows of
L = (l1, . . . , lr) to obtain a matrix A = (a1, . . . , ar). Then A is an OA(s, 1, s, 1) if n = 1, and a saturated
OA(sn, r, s, 2) if n ⩾ 2. Usually, L is called the generator matrix of A, and li is used as the column label
of ai for i = 1, . . . , r.

An N ×m matrix with entries from an abelian group G is called a difference scheme, and is denoted
by D(N,m, s), if each element of G appears equally often in the difference vector between any two
columns of the matrix [2]. Clearly, we must have N = λs for some positive integer λ. For two matrices
A = (aij)N1×m1 and B = (bij)N2×m2 with entries from G, the Kronecker sum of A and B, denoted by
A⊕B, is the N1N2 ×m1m2 matrix (aij +B), where aij +B stands for the N2 ×m2 matrix with entries
aij + bkl (1 ⩽ k ⩽ N2, 1 ⩽ l ⩽ m2). If A is a D(N1,m1, s) and B is a D(N2,m2, s), both based on an
abelian group G, A⊕B is a D(N1N2,m1m2, s) [26].

An orthogonal array can be constructed by performing the Kronecker sum operation on a small
orthogonal array and a difference scheme [2], and the resolvability properties of such an array enable
the addition of more columns [12, Subsection 6.2]. We summarize this fact into the following lemma.
Lemma 2.1. Suppose that A0 is an OA(N,m, s, t1) with m = t1 = 1 or m ⩾ t1 ⩾ 2, D0 is a D(λs, c, s),
and H is an OA(λs, k, s, t2) with k = t2 = 1 or k ⩾ t2 ⩾ 2, all with entries from an abelian group G.
Then

D1 = (A0 ⊕D0, 0N ⊕H) (2.1)

is an OA(λsN,mc+ k, s, 2), where 0N is an N -vector of zeros.
For a positive integer s, let Zs = {0, 1, . . . , s − 1}. An N ×m matrix with entries from Zs2 is called

a strong orthogonal array of strength 2+ with N runs, m factors and s2 levels, and is denoted by
SOA(N,m, s2, 2+), if any two-column subarray can be collapsed into an OA(N, 2, s2 × s, 2) and an
OA(N, 2, s × s2, 2), where collapsing s2 levels into s levels is done by ⌊x/s⌋ for x ∈ Zs2 , with ⌊x⌋ the
largest integer not exceeding x [8].

An SOA(N,m, s2, 2+) is called column-orthogonal if the inner product between any two columns of the
centered array is 0, where centring an SOA(N,m, s2, 2+) means that each entry a ∈ Zs2 is transformed
into 2a− s2 + 1 [32]. Denote a column-orthogonal SOA(N,m, s2, 2+) by OSOA(N,m, s2, 2+).

2.2 Two examples

Before discussing the general construction methods, we first present two constructed designs and their
favorable properties as illustrative examples.
Example 2.2. Using the construction method outlined in Section 3, we see that a new SOA(64, 9,

16, 2+), denoted by D, is obtained and presented in Table 1. Compared with the SOA(64, 8, 16, 2+), i.e.,
D′, constructed by He et al. [8], it can accommodate one additional factor. We also compare all the
eight-column subarrays of D with the design D′. It is observed that for each eight-column subarray of
D, out of its 56 three-dimensional projections, 48 achieve stratifications on 3× 3× 3 grids. In contrast,
among the 56 three-dimensional projections of D′, only 45 can achieve stratifications on 3× 3× 3 grids.
This indicates that each eight-column subarray of D demonstrates superior three-dimensional projection
uniformity compared with D′. For details on the construction of D, please refer to Example 3.5.
Example 2.3. Table 2 displays a novel OSOA(54, 12, 9, 2+), denoted by D, which has not been
documented in any literature. This design is constructed using the method explained in Section 4.
Compared with the OSOA(54, 7, 9, 2+) from Zhou and Tang [32], it has five more factors. Let D′ be
the array formed by the first five columns of D. In [10], a strength-three strong orthogonal array of 54
runs, 5 columns and 27 levels was developed, which accomplishes stratifications on 9× 3 and 3× 9 grids
in any two dimensions and 3 × 3 × 3 grids in any three dimensions. Our design D′, as a subarray of
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D, has the same number of factors and achieves the same stratifications in two or three dimensions. As
the maximum number m of factors in an OA(54,m, 3, 3) is five [11], D′ attains the maximum number of
factors. For details on the construction of D, please refer to Example 4.11.

Table 1 A new SOA(64, 9, 16, 2+) (transposed)

0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6 4
0 8 12 4 7 15 11 3 9 1 5 13 14 6 2 10 1 9 13 5 6 14 10 2 8 0 4 12 15 7 3 11
0 12 4 8 7 11 3 15 9 5 13 1 14 2 10 6 1 13 5 9 6 10 2 14 8 4 12 0 15 3 11 7
0 4 8 12 7 3 15 11 9 13 1 5 14 10 6 2 1 5 9 13 6 2 14 10 8 12 0 4 15 11 7 3
0 2 3 1 5 7 6 4 10 8 9 11 15 13 12 14 5 7 6 4 0 2 3 1 15 13 12 14 10 8 9 11
0 2 3 1 10 8 9 11 15 13 12 14 5 7 6 4 5 7 6 4 15 13 12 14 10 8 9 11 0 2 3 1
0 8 12 4 13 5 1 9 6 14 10 2 11 3 7 15 4 12 8 0 9 1 5 13 2 10 14 6 15 7 3 11
0 12 4 8 13 1 9 5 6 10 2 14 11 7 15 3 4 8 0 12 9 5 13 1 2 14 6 10 15 3 11 7
0 4 8 12 13 9 5 1 6 2 14 10 11 15 3 7 4 0 12 8 9 13 1 5 2 6 10 14 15 11 7 3
10 8 9 11 10 8 9 11 10 8 9 11 10 8 9 11 15 13 12 14 15 13 12 14 15 13 12 14 15 13 12 14
2 10 14 6 5 13 9 1 11 3 7 15 12 4 0 8 3 11 15 7 4 12 8 0 10 2 6 14 13 5 1 9
2 14 6 10 5 9 1 13 11 7 15 3 12 0 8 4 3 15 7 11 4 8 0 12 10 6 14 2 13 1 9 5
2 6 10 14 5 1 13 9 11 15 3 7 12 8 4 0 3 7 11 15 4 0 12 8 10 14 2 6 13 9 5 1
10 8 9 11 15 13 12 14 0 2 3 1 5 7 6 4 15 13 12 14 10 8 9 11 5 7 6 4 0 2 3 1
10 8 9 11 0 2 3 1 5 7 6 4 15 13 12 14 15 13 12 14 5 7 6 4 0 2 3 1 10 8 9 11
8 0 4 12 5 13 9 1 14 6 2 10 3 11 15 7 12 4 0 8 1 9 13 5 10 2 6 14 7 15 11 3
8 4 12 0 5 9 1 13 14 2 10 6 3 15 7 11 12 0 8 4 1 13 5 9 10 6 14 2 7 11 3 15
8 12 0 4 5 1 13 9 14 10 6 2 3 7 11 15 12 8 4 0 1 5 9 13 10 14 2 6 7 3 15 11

Table 2 A new OSOA(54, 12, 9, 2+) (transposed)

0 4 8 8 0 4 6 1 5 5 6 1 3 7 2 2 3 7 2 3 7 7 2 3 8 0 4
0 8 4 8 4 0 6 5 1 5 1 6 3 2 7 2 7 3 2 7 3 7 3 2 8 4 0
0 0 0 0 0 0 7 7 7 7 7 7 5 5 5 5 5 5 8 8 8 8 8 8 3 3 3
0 4 4 0 8 8 5 6 6 5 1 1 7 2 2 7 3 3 8 0 0 8 4 4 1 5 5
0 8 0 4 8 4 5 1 5 6 1 6 7 3 7 2 3 2 8 4 8 0 4 0 1 6 1
0 4 4 0 8 8 6 1 1 6 5 5 3 7 7 3 2 2 2 3 3 2 7 7 8 0 0
0 8 0 4 8 4 6 5 6 1 5 1 3 2 3 7 2 7 2 7 2 3 7 3 8 4 8
0 4 8 8 0 4 5 6 1 1 5 6 7 2 3 3 7 2 8 0 4 4 8 0 1 5 6
0 8 4 8 4 0 5 1 6 1 6 5 7 3 2 3 2 7 8 4 0 4 0 8 1 6 5
0 0 8 4 4 8 6 6 5 1 1 5 3 3 2 7 7 2 2 2 7 3 3 7 8 8 4
0 0 8 4 4 8 5 5 1 6 6 1 7 7 3 2 2 3 8 8 4 0 0 4 1 1 6
0 6 3 0 6 3 0 6 3 0 6 3 0 6 3 0 6 3 2 8 5 2 8 5 2 8 5
4 8 0 5 6 1 1 5 6 1 5 6 6 1 5 7 2 3 3 7 2 4 8 0 0 4 8
4 0 8 5 1 6 1 6 5 1 6 5 6 5 1 7 3 2 3 2 7 4 0 8 0 8 4
3 3 3 1 1 1 1 1 1 4 4 4 4 4 4 2 2 2 2 2 2 6 6 6 6 6 6
1 6 6 3 7 7 3 2 2 4 8 8 4 0 0 6 1 1 6 5 5 2 3 3 2 7 7
5 6 5 3 2 3 7 2 7 4 0 4 8 0 8 6 5 6 1 5 1 2 7 2 3 7 3
8 4 4 5 6 6 5 1 1 1 5 5 1 6 6 7 2 2 7 3 3 4 8 8 4 0 0
0 4 0 5 1 5 6 1 6 1 6 1 5 6 5 7 3 7 2 3 2 4 0 4 8 0 8
6 1 5 3 7 2 2 3 7 4 8 0 0 4 8 6 1 5 5 6 1 2 3 7 7 2 3
6 5 1 3 2 7 2 7 3 4 0 8 0 8 4 6 5 1 5 1 6 2 7 3 7 3 2
0 0 4 5 5 1 6 6 1 1 1 6 5 5 6 7 7 3 2 2 3 4 4 0 8 8 0
5 5 6 3 3 2 7 7 2 4 4 0 8 8 0 6 6 5 1 1 5 2 2 7 3 3 7
2 8 5 2 8 5 2 8 5 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4
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3 Construction of strong orthogonal arrays of strength two plus

In this section, we discuss the construction of an SOA(λsn,m, s2, 2+), where n is an integer greater than
two, s is a prime power, and λ is a positive integer that is not divisible by s. Since a construction for
s = 2 has been provided by Cheng et al. [5], we focus on the cases where s > 2.

3.1 Construction method

To obtain a strong orthogonal array of strength 2+, the following result from He et al. [8] is required.
Lemma 3.1. An SOA(λsn,m, s2, 2+) D exists if and only if there exist two arrays A and B, where
A = (a1, . . . , am) is an OA(λsn,m, s, 2) and B = (b1, . . . , bm) is an OA(λsn,m, s, 1) such that (aj , ak, bk)
is an OA(3) for any j ̸= k. The three arrays are linked through D = sA+B if A and B both have entries
from Zs.

Based on Lemma 3.1, we require an OA(λsn,m, s, 2) A = (a1, . . . , am) and an OA(λsn,m, s, 1) B =

(b1, . . . , bm) satisfying the condition that (aj , ak, bk) is an OA(3) for any j ̸= k. We select columns from
an OA(λsn,m′, s, 2), i.e., D1, to construct such A and B, where D1 has its entries from GF(s). Then an
SOA(λsn,m, s2, 2+) is obtained through

D = sϕ(A) + ϕ(B), (3.1)

where
ϕ(αj) = j (3.2)

for j = 0, . . . , s − 1 represents a one-to-one mapping from GF(s) to Zs, and ϕ(A) = (ϕ(aij)) for any
matrix A = (aij). In this article, D1 is called the base orthogonal array of the resulting design D.

Suppose that A0 is a saturated regular OA(sn−1, (sn−1 − 1)/(s − 1), s, 2) with a generator matrix L.
It is worth noting that the first nonzero element in each column of L is always 1. Then we can partition
A0 and L into five parts as follows:

A0 = (A(1), . . . , A(5)) and L = (L(1), . . . , L(5)), (3.3)

where L(k) is the generator matrix of A(k) for 1 ⩽ k ⩽ 5. Furthermore, L(1), . . . , L(5) consist of vectors
l = (l1, . . . , ln−1)

T satisfying the following conditions:
(i) l1 = 0, and (l2, . . . , ln−1) contains αs−2;
(ii) l1 = 0, and (l2, . . . , ln−1) does not contain αs−2;
(iii) l1 = 1, and (l2, . . . , ln−1) contains αs−2 and 1;
(iv) l1 = 1, and (l2, . . . , ln−1) contains αs−2 but not 1;
(v) l1 = 1, and (l2, . . . , ln−1) does not contain αs−2.
Let D0 = (d1, . . . , dc) be a D(λs, c, s) based on GF(s), where d1 = 0λs by assumption and d2, . . . , dc

are OA(λs, 1, s, 1) by definition.
Let H be an OA(λs, 1, s, 1) based on GF(s) and

D1 = (A0 ⊕D0, 0sn−1 ⊕H). (3.4)

Then D1 is an OA(λsn, c(sn−1 − 1)/(s− 1) + 1, s, 2) by Lemma 2.1.
Now we construct A and B from the base orthogonal array D1 in (3.4) as follows. Let

A = [(A(1), A(3), A(5))⊕ d1, (A
(1), A(2), A(3), A(4))⊕ (d2, . . . , dc)]. (3.5)

Denote by a
(q)
i and l

(q)
i = (l

(q)
1,i , . . . , l

(q)
n−1,i)

T the i-th columns of A(q) and L(q), respectively. Then B is
constructed as follows.

(i) For the column a
(1)
i ⊕ d1 ∈ A, let B select a

(2)
i′ ⊕ d1 such that l

(2)
k,i′ , k > 1 equals 1 if l(1)k,i = αs−2 and

0 otherwise.
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(ii) For the column a
(3)
i ⊕ d1 ∈ A, let B select a

(2)
i′ ⊕ d1 such that l

(2)
k,i′ , k > 1 equals 1 if l(1)k,i = 1 and 0

otherwise.
(iii) For the column a

(5)
i ⊕ d1 ∈ A, let B select a

(5)
i ⊕ d2.

(iv) For the column a
(q)
i ⊕ dj ∈ A with q ∈ {1, 2} and j > 1, let B select a

(4)
i′ ⊕ d1 such that l

(4)
k,i′ , k > 1

equals 0 if l(q)k,i = 0 and αs−2 otherwise.
(v) For the column a

(q)
i ⊕ dj ∈ A with q ∈ {3, 4} and j > 1, let B select a

(2)
i′ ⊕ d1 such that l

(2)
k,i′ k > 1

equals 1 if l(q)k,i = αs−2 and 0 otherwise.
Theorem 3.2. Let A and B be constructed as described above. Then the design D = sϕ(A) + ϕ(B) is
an SOA(λsn,m, s2, 2+), where

m = c(sn−1 − 1)/(s− 1)− c(s− 1)n−2 − ((s− 1)n−2 − 1)/(s− 2) + (s− 2)n−2.

The construction method divides L and A0 into five segments as illustrated in (3.3). With the exception
of L(1) and L(3), the remaining portions, i.e., L(2), L(4) and L(5), become nonempty when n = 3, and
all five segments are nonempty for n > 3. Leveraging Lemma 3.1, it is feasible to generate a strong
orthogonal array of strength 2+ with a reduced number of columns by utilizing any subset of these
segments. The resulting design will form a subarray of the one generated by Theorem 3.2.

Combining Theorem 3.2 with the existence results for D(λs, λs, s) in [12, Chapter 6] yields the following
corollary, whose proof is provided in Appendix A.
Corollary 3.3. There exists an SOA(λsn,m, s2, 2+) with

m = λ(sn − 1)/(s− 1)− (λ(s− 1)n − (λ− 1)(s− 1)n−2 − 1)/(s− 2) + (s− 2)n−2 − λ,

if one of the following conditions holds:
(i) s = pu1 , λ = kpu2 , k ∈ {1, 2, 4}, p is a prime, p ∤ k, and u1 > u2 ⩾ 0 are integers;
(ii) s− 1 is a prime power and λ = (s− 1)k with k ⩾ 1.

Remark 3.4. For the case of λ = 1, He et al. [8, Theorem 4] proposed a construction method using
regular orthogonal arrays. As a comparison, our method gives (s− 2)n−2 − 1 more factors.
Example 3.5 (Example 2.2 continued). The SOA(64, 9, 16, 2+) D in Table 1 is constructed by the
following procedures. Let λ = 1, s = 4 and n = 3. Take GF(4) = {α0 = 0, α1 = x, α2 = 1 + x, α3 = 1}
with a primitive polynomial p(x) = x2+x+1. Let A0 = (a1, a2, . . . , a5) be a Rao-Hamming OA(16, 5, 4, 2)

with the generator matrix

L =

(
0 1 1 1 1

1 x+ 1 0 1 x

)
. (3.6)

Partition L as

(L(2), L(4), L(5)) =

(
0 1 1 1 1

1 x+ 1 0 1 x

)
. (3.7)

When l = (l1, l2)
T ∈ [GF(4)]2 has its first nonzero element being 1, l cannot satisfy (i) l1 = 0 and

l2 = αs−2 or (ii) l1 = 1, and l2 contains both αs−2 and 1. This means L(1) = L(3) = ∅. According to the
partition of L, we divide A0 into

A0 = (A(2), A(4), A(5)), (3.8)

where A(2) = a1, A(4) = a2 and A(5) = (a3, a4, a5). Let D0 = (d1, d2, d3, d4) be the D(4, 4, 4) in Table B.1
in Appendix B. With columns selected from A0 ⊕D0, our construction gives two arrays

A = [(a3, a4, a5)⊕ d1, (a1, a2)⊕ (d2, d3, d4)]

and
B = [(a3, a4, a5)⊕ d2, (a2, a1)⊕ (d1, d1, d1)].

Then D = 4ϕ(A) + ϕ(B) is the SOA(64, 9, 16, 2+) shown in Table 1.
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Table 3 A comparison of the number m of factors for the constructed SOA(N,m, s2, 2+) and the number m′ of factors
for the existing SOA(N,m′, s2, 2+), where N = λsn

N λ s n m m′ Source
27 1 3 3 6 6 He et al. [8]
81 1 3 4 25 25 He et al. [8]
243 1 3 5 90 90 He et al. [8]
64 1 4 3 9 8 He et al. [8]
256 1 4 4 48 45 He et al. [8]
1,024 1 4 5 227 220 He et al. [8]
125 1 5 3 12 10 He et al. [8]
625 1 5 4 79 71 He et al. [8]
3,125 1 5 5 466 440 He et al. [8]
54 2 3 3 12 12 Chen and Tang [4]
162 2 3 4 52 43 Jiang et al. [13]
486 2 3 5 186 165 Jiang et al. [13]
128 2 4 3 17 – –
512 2 4 4 96 – –
2,048 2 4 5 459 – –
250 2 5 3 22 15 Jiang et al. [13]
1,250 2 5 4 154 118 Jiang et al. [13]
6,250 2 5 5 926 759 Jiang et al. [13]
192 3 4 3 25 – –
768 3 4 4 144 – –
3,072 3 4 5 691 – –
108 4 3 3 24 – –
324 4 3 4 106 – –
972 4 3 5 378 – –

Example 3.6. Consider the scenario where λ = 3, s = 4 and n = 3, implying N = λsn = 192. Let
A0 be the regular OA(16, 5, 4, 2) presented in Example 3.5, and D0 be D(12, 12, 4) provided in Table B.1.
By applying Theorem 3.2, we can construct an SOA(192, 25, 16, 2+), denoted by D, that is derived from
A0 and D0. This design attains stratifications on 16× 4 and 4× 16 grids in two dimensions. According
to [8, Theorem 5], another strong orthogonal array of strength 2+, denoted by D′, with 192 runs, 21

factors and 12 levels can be constructed using the OA(64, 21, 4, 2) available on the N.J.A. Sloane website
(http://neilsloane.com/oadir/). Compared with D, D′ has 4 fewer factors and achieves stratifications on
12× 4 and 4× 12 grids in two dimensions.

We also compare the 12, 650 21-column subarrays of D with the design D′ using the uniform projection
criterion, which was proposed by Sun et al. [28] to evaluate the two-dimensional projection uniformity
of designs. The criterion values, where smaller values are better, for the 21-column subarrays of D are
distributed in the interval (0.000728, 0.000734), while the criterion value for D′ is 0.0013. This indicates
that all 21-column subarrays of D outperform D′ under the uniform projection criterion.

Table 3 compares the number of factors for the SOA(λsn,m, s2, 2+) constructed using our method and
the existing SOA(λsn,m′, s2, 2+). Here, the symbol ‘–’ indicates a lack of existing designs or methods. In
contrast to the approach proposed by [8], which used regular orthogonal arrays, our construction employs
designs in (3.4) as base orthogonal arrays, rendering it more versatile and general. Notably, when λ = 1,
our method generates (s−2)n−2−1 more columns compared with the method introduced by He et al. [8].
Furthermore, when λ > 1, our method remains applicable, whereas that of He et al. [8] is not. In the case
of λ = 2 and odd s, our method outperforms the strategy outlined in [13]. For n = 3 and λ = 2, Chen and
Tang [4] obtained an SOA(54, 12, 9, 2+) with identical parameters to ours using a computer-based search.
Notably, our method can generate new strong orthogonal arrays in all the other scenarios where existing
methods are inapplicable. Interested readers can access all the designs obtained through our method in
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Table 3 at https://github.com/bcjiang0326/data. The difference schemes in Table B.1 in Appendix B
are employed for constructing these designs.

3.2 Completeness of strong orthogonal arrays of strength two plus

In this subsection, we explore the possibility of further increasing the number of columns for the
constructed strong orthogonal arrays of strength 2+ in Subsection 3.1. Assume that we have an
SOA(λsn,m, s2, 2+), denoted by D, constructed from A and B through the equation D = sϕ(A)+ϕ(B),
as outlined in Theorem 3.2. In this construction, the columns of both A and B are selected from the
base orthogonal array D1 in (3.4).

Given that the construction of A plays a pivotal role, we investigate the possibility of adding more
columns from D1 to A while ensuring the existence of a matrix B′ such that (ai, aj , b

′
i) forms an OA(3)

for any i ̸= j, where b′i is the i-th column of B′ and is still selected from D1.
Definition 3.7 (Completeness). If no column of D1 can be added to A to construct strong orthogonal
arrays of strength 2+, the design D = sϕ(A) + ϕ(B) is said to be complete within D1.

A property of difference schemes with entries from GF(s) is needed. For simplicity and convenience,
we name this property as the property δ.
Definition 3.8 (Property δ of difference schemes). For any D(λs, c, s) D0 = (d1, . . . , dc) with entries
from GF(s), we say that D0 has the property δ if for any dj ∈ D0 and any β ∈ GF(s), there exists a
column dj′ ∈ D0 (which can be the same as dj) such that dj′ − βdj is not an OA(λs, 1, s, 1).

The property δ for D0 is quite mild. In fact, D0 must have the property δ if it cannot be expanded into
a D(λs, c+ 1, s). To illustrate this, assume that there exist a column dj ∈ D0 and an element β ∈ GF(s)

such that for all dj′ ∈ D0, dj′ − βdj is an OA(λs, 1, s, 1). This implies that βdj /∈ D0, and we can add
βdj to D0 to obtain a D(λs, c+1, s). It is important to note that c1 = λs represents the maximum value
of c for which a D(λs, c, s) can exist. The following conclusion is straightforward.
Proposition 3.9. For any D(λs, c, s) with entries from GF(s), it either possesses the property δ or
can be extended to have the property δ.

We have the following conclusion, whose proof is provided in Appendix A.
Theorem 3.10. The strong orthogonal array of strength 2+ obtained in Theorem 3.2 is complete if
the used D0 possesses the property δ.
Remark 3.11. Based on Proposition 3.9 and Theorem 3.10, we can directly conclude that if we select
a D(λs, λs, s) for D0, the strong orthogonal array constructed in Theorem 3.2 is complete. So the strong
orthogonal arrays in Corollary 3.3 are all complete.
Remark 3.12. When D0 is a D(λs, λs, s), completeness guarantees that the design constructed in
Subsection 3.1 cannot accommodate any additional columns, a desirable attribute. However, it is
important to recognize that completeness does not confirm that our construction approach achieves the
maximum possible number of columns. There might exist an alternative construction method capable of
producing a design with a greater number of columns.

4 Construction of column-orthogonal strong orthogonal arrays of strength
two plus

In this section, our goal is to construct an OSOA(λsn,m, s, 2+), where n is an integer greater than two,
s is a prime power, and λ is a positive integer that is not divisible by s. Given that Zhou and Tang [32]
have already provided the construction method in the case of s = 2, achieving the maximum number of
columns in the resulting design, our emphasis is on scenarios where s > 2. The following lemma from
Zhou and Tang [32] is a key result for constructing an OSOA(λsn,m, s, 2+).
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Lemma 4.1. Suppose that there exist two OA(λsn,m, s, 2) A = (a1, . . . , am) and B = (b1, . . . , bm)

such that (aj , ak, bk) is an OA(3) for any j ̸= k. If both A and B have entries from Zs, D = sA+ B is
an OSOA(λsn,m, s2, 2+).

In contrast to Lemma 3.1, B in Lemma 4.1 has strength 2, and thus disallowing repeated columns.
Similar to Subsection 3.1, we construct A and B through a base orthogonal array OA(λsn,m′, s, 2) over
GF(s), and then the desired OSOA(λsn,m, s2, 2+) is obtained using (3.1).

Let A0 = (a1, . . . , as+1) be a regular OA(s2, s + 1, s, 2) with a generator matrix L = (l1, . . . , ls+1).
Without loss of generality, assume that the first four columns of L are given by

(l1, l2, l3, l4) =

(
0 1 1 1

1 αs−2 1 1 + αs−2

)
. (4.1)

Let D(1) = (d
(1)
1 , . . . , d

(1)
c ) be a D(λs, c, s) with entries from GF(s) and d(1) = 0λs. Define v =

(0, 1, α1, . . . , αs−2)
T, V = v · vT and

D(k) = V ⊕D(k−1) (4.2)
for any k ⩾ 2. Then V is a D(s, s, s) and

D(k) = (d
(k)
1 , d

(k)
2 , . . . , d

(k)

csk−1) (4.3)

is a D(λsk, csk−1, s) for any k ⩾ 1.
Pick a fixed integer q where 1 ⩽ q ⩽ ⌊(n− 1)/2⌋. Define

H0 =


0λ ⊕ v, if n− 2q = 1,

(v ⊕D(1), 0λs ⊕ v), if n− 2q = 2,

(Ã⊕D(1), 0λsn−2q−1 ⊕ v), if n− 2q ⩾ 3,

(4.4)

where Ã is a regular OA(sn−2q−1, (sn−2q−1−1)/(s−1), s, 2) when n−2q ⩾ 3. Then H0 is an OA(λs, 1, s, 1)

if n− 2q = 1, and an OA(λsn−2q, c(sn−2q−1 − 1)/(s− 1) + 1, s, 2) otherwise.
Recursively define

Hk = (A0 ⊕D(n−2q+2k−2), 0s2 ⊕Hk−1) (4.5)
for 1 ⩽ k ⩽ q. Lemma 2.1 shows that Hk is an

OA(λsn−2q+2k, c(sn−2q+2k−1 − 1)/(s− 1) + 1, s, 2)

for 1 ⩽ k ⩽ q. In particular, Hq can be expressed as

Hq = (A0 ⊕D(n−2), 0s2 ⊕A0 ⊕D(n−4), . . . , 0s2q−2 ⊕A0 ⊕D(n−2q), 0s2q ⊕H0). (4.6)

Now we construct A and B through the base orthogonal array Hq in (4.6) as follows.
Step 1. For all 1 ⩽ k ⩽ q, let A and B be constructed by stacking the matrices

0s2k−2 ⊕ [(a1, a2)⊕ (d
(n−2k)
2 , . . . , d

(n−2k)

csn−2k−1), a3 ⊕ d
(n−2k)
1 ] (4.7)

and
0s2k−2 ⊕ [(a4, a3)⊕ (d

(n−2k)
2 , . . . , d

(n−2k)

csn−2k−1), a2 ⊕ d
(n−2k)
1 ], (4.8)

respectively, by columns.
Step 2. Randomly select rq distinct columns from the matrix 0s2q ⊕ H0 and append them to A by
columns, where

rq = min{c(sn−2q−1 − 1)/(s− 1) + 1, c(s− 3)(sn−1 − sn−2q−1)/(s2 − 1) + q}. (4.9)

Subsequently, randomly select rq distinct columns from the matrices

0s2k−2 ⊕ [a4 ⊕ d
(n−2k)
1 , (a5, . . . , as+1)⊕D(n−2k)], 1 ⩽ k ⩽ q, (4.10)

and append them to B by columns.
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Theorem 4.2. For any integer 1 ⩽ q ⩽ ⌊(n − 1)/2⌋, let A and B be constructed as described above.
Then the design D = sϕ(A) + ϕ(B) is an OSOA(λsn,mq, s

2, 2+) with

mq = 2c(sn−1 − sn−2q−1)/(s2 − 1)− q + rq, (4.11)

where ϕ(·) and rq are defined in (3.2) and (4.9), respectively.
Define q0 = ⌊(n − 1)/2⌋. By maximizing mq in (4.11) for 1 ⩽ q ⩽ q0, we can get the optimal q∗ and

the corresponding mq∗ values.
Corollary 4.3. (i) If s = 3 and n ⩽ 4(c+ 1),

q∗ = q0 and mq∗ = mq0 = c(3n − 3n−2q0)/12− q0 + rq0 ,

where rq0 = min{c+ 1, q0} if n is even and rq0 = 1 otherwise.
(ii) If s > 3,

q∗ = 1 and mq∗ = m1 = 2csn−3 + c(sn−3 − 1)/(s− 1).

Remark 4.4. Note that the optimal value of q∗ depends on the parameters s, n and c. If s = 3 and
n ⩽ 4(c+ 1), q∗ = q0, which is the largest possible value of q. On the other hand, if s > 3, q∗ = 1, which
is the smallest possible value of q.
Remark 4.5. The existence of D(3, 3, 3) guarantees the existence of D(3λ, 3, 3). Therefore, for s = 3,
we can always assume that c ⩾ 3. Corollary 4.3(i) then implies that q∗ = q0 when s = 3 and n ⩽ 16.

Similar to Theorem 3.2, when a D(λs, λs, s) exists, Theorem 4.2 has the following corollary.
Corollary 4.6. There exists an OSOA(λsn,m, s2, 2+) with

m =

{
λ(3n − 3n−2q0)/4− q0 + rq0 , if s = 3,

2λsn−2 + λ(sn−2 − 1)/(s− 1)− λ, if s > 3,

where q0 = ⌊(n − 1)/2⌋ and rq0 = min{3λ + 1, q0} if n is even and rq0 = 1 otherwise, if one of the
following conditions holds:

(i) s = pu1 , λ = kpu2 , k ∈ {1, 2, 4}, p is a prime, p ∤ k and u1 > u2 ⩾ 0 are integers;
(ii) s− 1 is a prime power and λ = (s− 1)k with k ⩾ 1.

Remark 4.7. If a D(λs, λs, s) exists, [32, Theorem 4] can be used to construct an

OSOA(λsn,m′, s2, 2+)

with m′ = λ(sn−1 − 1)/(s − 1) − λ + 1. In comparison, when s > 3, Corollary 4.6 provides λsn−2 − 1

additional factors. For s = 3, it provides at least λ(3n−1 − 3n−2q0 +6)/4+ rq0 − q0 − 1 additional factors.
Corollary 4.8. There is an OSOA(27λ, 6λ, 9, 2+) for any integers λ = 2k and k ⩾ 0.
Remark 4.9. For n = s = 3 and λ ∈ {1, 2}, if we juxtapose the constructed matrices A and B in
Theorem 4.2, we obtain an OA(27λ, 12λ, 3, 2), which is only one column short of being maximal. This
implies that no columns can be added to A and B while maintaining the requirements in Lemma 4.1.
Therefore, among all OSOA(27λ,m, 9, 2+) where λ ∈ {1, 2} derived from A and B as in Lemma 4.1, our
approach achieves the maximum number of columns.
Example 4.10. Let λ = 1, s = 3 and n = 3. Then we have q = q0 = ⌊(n − 1)/2⌋ = 1 and rq = 1

by (4.9). Let
GF(3) = {α0 = 0, α1 = 2, α2 = 1}.

Note that
1 + αs−2 = 1 + α1 = 0.

Let A0 be the regular OA(9, 4, 3, 2) with the generator matrix

L = (l1, l2, l3, l4) =

(
0 1 1 1

1 2 1 0

)
. (4.12)
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Let H0 = (α0, α1, α2)
T and D(1) = H0 ·HT

0 = (d
(1)
1 , d

(1)
2 , d

(1)
3 ) be a D(3, 3, 3). Then

H1 = (A0 ⊕D(1), 09 ⊕H0)

is an OA(27, 13, 3, 2). Based on H1, our construction gives two arrays

A = [(a1, a2)⊕ (d
(1)
2 , d

(1)
3 ), a3 ⊕ d

(1)
1 , 09 ⊕H0]

and
B = [(a4, a3)⊕ (d

(1)
2 , d

(1)
3 ), a2 ⊕ d

(1)
1 , a4 ⊕ d

(1)
1 ].

The first five columns of A and B are from Step 1, and the last ones are from Step 2. By Theorem 4.2,
the array D = 3ϕ(A) + ϕ(B), shown in Table 4, is an OSOA(27, 6, 9, 2+) and has not been reported in
the literature.
Example 4.11 (Example 2.3 continued). The OSOA(54, 12, 9, 2+) D in Table 2 is constructed by the
following procedures. Let λ = 2, s = 3 and n = 3. Then q = q0 = ⌊(n − 1)/2⌋ = 1 and rq = 1 by (4.9).
Take

GF(3) = {α0 = 0, α1 = 2, α2 = 1}.

Let A0 = (a1, a2, a3, a4) be the regular OA(9, 4, 3, 2) used in Example 4.10, whose generator matrix L is
given in (4.12). Let D(1) = (d

(1)
1 , . . . , d

(1)
6 ) be the D(6, 6, 3) given in Table B.1 in Appendix B and

H0 = (α0, α1, α2, α0, α1, α2)
T.

Then
H1 = (A0 ⊕D(1), 09 ⊕H0)

is an OA(54, 25, 3, 2). Using H1, we see that our construction gives two arrays

A = [(a1, a2)⊕ (d
(1)
2 , . . . , d

(1)
6 ), a3 ⊕ d

(1)
1 , 09 ⊕H0]

and
B = [(a4, a3)⊕ (d

(1)
2 , . . . , d

(1)
6 ), a2 ⊕ d

(1)
1 , a4 ⊕ d

(1)
1 ].

Except for the last ones, all the columns of A and B are from Step 1. By Theorem 4.2,

D = 3ϕ(A) + ϕ(B)

is an OSOA(54, 12, 9, 2+), as tabulated in Table 2.
Table 5 compares the number of factors for designs obtained from our method and Zhou and

Tang [32]’s method. It can be observed that our method consistently produces more factors than
Zhou and Tang [32]’s. All the designs obtained by our method in Table 5 can be accessed at
https://github.com/bcjiang 0326/data, for interested readers. The difference schemes in Table B.1 in
Appendix B are used for constructing these designs.

Table 4 The transposed OSOA(27, 6, 9, 2+) constructed in Example 4.10

0 3 6 0 3 6 0 3 6 1 4 7 1 4 7 1 4 7 2 5 8 2 5 8 2 5 8
0 8 4 3 2 7 6 5 1 1 6 5 4 0 8 7 3 2 2 7 3 5 1 6 8 4 0
0 4 8 3 7 2 6 1 5 1 5 6 4 8 0 7 2 3 2 3 7 5 6 1 8 0 4
0 0 0 5 5 5 7 7 7 4 4 4 6 6 6 2 2 2 8 8 8 1 1 1 3 3 3
0 8 4 7 3 2 5 1 6 4 0 8 2 7 3 6 5 1 8 4 0 3 2 7 1 6 5
0 4 8 7 2 3 5 6 1 4 8 0 2 3 7 6 1 5 8 0 4 3 7 2 1 5 6
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Table 5 A comparison of the number m of factors for the constructed OSOA(N,m, s2, 2+) and the number m′ of factors
for OSOA(N,m′, s2, 2+) in [32], where N = λsn

N λ s n q m m′

27 1 3 3 1 6 4
81 1 3 4 1 18 13
243 1 3 5 2 59 40
64 1 4 3 1 8 5
256 1 4 4 1 36 21
1,024 1 4 5 1 148 85
125 1 5 3 1 10 6
625 1 5 4 1 55 31
3,125 1 5 5 1 280 156
54 2 3 3 1 12 7
162 2 3 4 1 36 25
486 2 3 5 2 119 79
128 2 4 3 1 16 9
512 2 4 4 1 72 41
2,048 2 4 5 1 296 169
250 2 5 3 1 20 11
1,250 2 5 4 1 110 61
6250 2 5 5 1 560 311
192 3 4 3 1 24 13
768 3 4 4 1 108 61
3,072 3 4 5 1 444 253
108 4 3 3 1 24 13
324 4 3 4 1 72 49
972 4 3 5 2 239 157

5 Three-dimensional projections of strong orthogonal arrays

In this section, we investigate the three-dimensional projection properties of the strong orthogonal
arrays and column-orthogonal strong orthogonal arrays of strength 2+ constructed in Sections 3 and 4,
respectively. For these strength-2+ designs with identical parameters, we can compare and filter them
based on their three-dimensional projection properties.

For an SOA(λsn,m, s2, 2+) D with m ⩾ 3, we define π(D) as the proportion of its three-dimensional
projections that can be collapsed into an OA(λsn, 3, s, 3). The larger the value of π(D), the more space-
filling the design becomes in three-dimensional projections. Specifically, π(D) = 1 if and only if D can
be collapsed into an OA(λsn,m, s, 3). We observe that for the constructed design D in Theorem 3.2, the
value of π(D) depends on the used difference scheme D0 = (d1, . . . , dc). In particular, for n = 3, we have
the following result.

Theorem 5.1. For the constructed SOA(λsn,m, s2, 2+) D in Theorem 3.2 with n = 3, the value of
π(D) is given by

π(D) =
6(c− 1)(s(s− 2) + (s+ c− 1)(c− 2)) + 12ω0

(2c+ s− 3)(2c+ s− 4)(2c+ s− 5)
, (5.1)

where ω0 is the number of tuples (β, dj , dj′), with β ∈ GF(s) \ {0, 1} and 2 ⩽ j < j′ ⩽ c, such that
dj′ − βdj is an OA(λs, 1, s, 1).

Similar to Theorem 5.1, we have the following result for the column-orthogonal strong orthogonal array
of strength 2+ constructed in Theorem 4.2.

Theorem 5.2. For the constructed OSOA(λsn,m, s2, 2+) D in Theorem 4.2 with n = 3, the value of
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π(D) is given by

π(D) =
3(c− 1)(c2 − c+ 1) + 3ω1

2c(c− 1)(2c− 1)
, (5.2)

where ω1 is the number of pairs (d
(1)
j , d

(1)
j′ ) with 2 ⩽ j, j′ ⩽ c, such that d

(1)
j′ − (αs−2 − 1)d

(1)
j is an

OA(λs, 1, s, 1). For s = 3 in particular, we have

ω1 = (c− 1)(c− 2) and π(D) = (3c2 − 3)/(4c2 − 2c).

In accordance with Theorems 5.1 and 5.2, we can achieve a strong orthogonal array or column-
orthogonal strong orthogonal array of strength 2+ that attains the maximum π(D) value by selecting a
difference scheme that maximizes ω0 or ω1.
Example 5.3. Suppose that we wish to construct an OSOA(192, 12, 16, 2+) and hope that this design
exhibits the best possible three-dimensional space-filling properties, specifically the highest π(D) value.

One solution is to choose the D(12, 12, 4) in Table B.1 as D(1). By applying Theorem 4.2, we can
obtain an OSOA(192, 24, 16, 2+) and then compare the π(D) values of all its 12-column subarrays to
select the best one. This approach would require calculating the π(D) values for a staggering 2,704,156
instances of OSOA(192, 12, 16, 2+), which represents an exceptionally demanding computational task.

Alternatively, we can select a D(12, 6, 4) for D(1) and directly obtain an OSOA(192, 12, 16, 2+) using
Theorem 4.2. According to Theorem 5.2, higher values of ω1 correspond to greater π(D) values. Therefore,
we only need to compare the ω1 values among the 462 D(12, 6, 4) subarrays within the D(12, 12, 4), where
the first column is 012, resulting in a significantly reduced computational workload. A straightforward
calculation reveals that the optimal D(12, 6, 4) corresponds to a ω1 value of 15, resulting in a π(D) value
of 0.77 for the constructed OSOA(192, 12, 16, 2+).

6 Discussion

We introduce two innovative methods for constructing strong orthogonal arrays and column-orthogonal
strong orthogonal arrays of strength 2+. Compared with the existing methods, our approaches can
accommodate a greater number of factors with identical run sizes or, at the very least, an equal number.
Additionally, our methods allow us to construct a wider variety of new strong orthogonal arrays with
run sizes that were previously beyond reach. These designs, obtained through our methods, achieve
stratifications on s2 × s and s× s2 grids in any two dimensions, as well as s× s× s grids in a substantial
portion of three dimensions.

A natural question arises: can the number of columns in the strong orthogonal arrays obtained through
our construction methods reach the maximum possible value? To answer this question, we need to
derive tight upper bounds on the maximum number of factors in a strong orthogonal array or a column-
orthogonal strong orthogonal array of strength 2+. Currently, these remain open problems, even for
specific cases, and require exhaustive enumeration of all the potential strong orthogonal arrays or column-
orthogonal strong orthogonal arrays.

We also propose several avenues for future research. First, a promising direction is to leverage our
base orthogonal arrays to generate other types of space-filling designs [9, 10, 19, 20, 31]. Secondly, while
Theorems 5.1 and 5.2 unveil relationships between difference schemes and the three-dimensional projection
properties of the obtained strong orthogonal arrays and column-orthogonal strong orthogonal arrays for
n = 3, future research aims to extend these relationships to cases with n > 3 and to identify optimal
difference schemes when they are not unique for given parameters. Thirdly, in Examples 2.3 and 4.11, we
observe that the OSOA(54, 12, 9, 2+) obtained using our method can be partitioned into three subarrays
with 5, 4 and 3 columns, respectively, each achieving stratifications on 3 × 3 × 3 grids in all three
dimensions. However, exhaustive searches confirm that it is impossible to have two subarrays of 5 columns
with this property. A potential direction for future research is to group columns in the constructed strong
orthogonal arrays into subarrays with enhanced properties, with the concept of fractional factorials of
variable resolution [14] being a potentially useful approach.
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Appendix A Proofs
Assume in Lemma 2.1 that A0 = (a1, . . . , ar), where r = (sn−1)/(s−1) is a Rao-Hamming OA(sn, r, s, 2)

with a generator matrix L = (l1, . . . , lr), D0 = (d1, . . . , dc) is a D(λs, c, s) and H = (h1, . . . , hk) is an
OA(λs, k, s, t) with k = t = 1 or k ⩾ t ⩾ 2, all based on GF(s). Then we obtain the following result.
Lemma A.1. (i) [a1 ⊕ d1, 0sn ⊕ (h1, h2)] forms an OA(3).

(ii) [ai ⊕ dj , ai′ ⊕ dj′ , 0sn ⊕ h1] forms an OA(3) if i ̸= i′, and the converse is true if s ∤ λ.
(iii) [ai ⊕ dj , ai′ ⊕ (d1, d2)] forms an OA(3) if i ̸= i′, and the converse is true if s ∤ λ.
(iv) If β1l1 + β2l2 + β3l3 = 0 for some nonzero β1, β2, β3 ∈ GF(s), [a1 ⊕ dj1 , a2 ⊕ dj2 , a3 ⊕ dj3 ] forms

an OA(3) if and only if β1dj1 + β2dj2 + β3dj3 forms an OA(λs, 1, s, 1).
(v) [a1 ⊕ dj1 , a2 ⊕ dj2 , a3 ⊕ dj3 ] forms an OA(3) if l1, l2 and l3 are linearly independent.

Proof. Let G = GF(s) and F = {1, . . . , λs}. Denote by dk,j and hk,j the k-th entries of dj and hj ,
respectively, for any dj ∈ D, hj ∈ H and k ∈ F . Since A is a Rao-Hamming OA(N,m, s, 2), without loss
of generality, assume N = sn and m = (sn − 1)/(s− 1). Then L = (l1, . . . , lm) is an n×m matrix based
on G.

(i) The number of times that (z1, z2, z3) appears as a row in the subarray [a1 ⊕ d1, 0N ⊕ (h1, h2)] is
equal to the number of pairs (X,x) ∈ Gn × F such that

XTl1 + dx,1 = z1, hx,1 = z2, hx,2 = z3. (A.1)

For every x satisfying hx,1 = z2 and hx,2 = z3, there are sn−1 solutions for X in (A.1). Since H is an
OA(λs, k, s, t) with t ⩾ 2, there are λ/s choices for x. So the total number of solutions for (X,x) in (A.1)
is λsn−2, implying that

[a1 ⊕ d1, 0N ⊕ (h1, h2)]

is an OA(3).
(ii) The number of times that (z1, z2, z3) appears as a row in the subarray [ai ⊕ dj , ai′ ⊕ dj′ , 0N ⊕ h1]

is equal to the number of pairs (X,x) ∈ Gn × F such that

XTli + dx,j = z1, XTli′ + dx,j′ = z2, hx,1 = z3. (A.2)

If i ̸= i′, the first two equations in X in (A.2) are independent. For every x satisfying hx,1 = z3, there
are sn−2 solutions for X in (A.2). Since there are λ choices for x, the total number of solutions for (X,x)

in (A.2) is λsn−2, as desired. Next, assume i = i′. Then (A.2) indicates

hx,1 = z3, dx,j − dx,j′ = z1 − z2. (A.3)

For every x satisfying (A.3), there are sn−1 solutions for X in (A.2). Since s ∤ λ, the number of solutions
for x in (A.3) cannot be λs−1, which means that the total number of solutions in (A.2) cannot be λsn−2,
implying that

[ai ⊕ (dj , dj′), 0N ⊕ h1]

is not an OA(3).
(iii) The number of times that (z1, z2, z3) appears as a row in the subarray [ai ⊕ dj , ai′ ⊕ (d1, d2)] is

equal to the number of pairs (X,x) ∈ Gn × F such that

XTli + dx,j = z1, XTli′ + dx,1 = z2, XTli′ + dx,2 = z3. (A.4)

If i ̸= i′, it is seen that (A.4) will not have a solution unless

dx,2 − dx,1 = z3 − z2. (A.5)

For every x satisfying (A.5), there are sn−2 solutions for X in (A.4). Since D is a D(λs, c, s), there are
precisely λ values of x satisfying (A.5). Hence, the total number of solutions for (X,x) in (A.4) is λsn−2,
as required. Next, assume i = i′. We find from (A.4) that

dx,2 − dx,1 = z3 − z2, dx,1 − dx,j = z2 − z1, (A.6)
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and for every x satisfying (A.6), there are sn−1 solutions for X in (A.4). Since s ∤ λ, the number of
solutions for x in (A.6) cannot be λs−1, and the total number of solutions in (A.4) cannot be λsn−2,
which is not desired.

(iv) The number of times that (z1, z2, z3) appears as a row in the subarray [a1 ⊕ dj1 , a2 ⊕ dj2 , a3 ⊕ dj3 ]

is equal to the number of pairs (X,x) ∈ Gn × F such that

XTl1 + dx,j1 = z1, XTl2 + dx,j2 = z2, XTl3 + dx,j3 = z3. (A.7)

Since β1l1 + β2l2 + β3l3 = 0, (A.7) will not have a solution unless

β1dx,j1 + β2dx,j2 + β3dx,j3 = β1z1 + β2z2 + β3z3, (A.8)

and for each x satisfying (A.8), there are sn−2 solutions for X in (A.7). Note that (A.8) has λ solutions
for any (z1, z2, z3), if and only if β1dx,j1 + β2dx,j2 + β3dx,j3 is an OA(λs, 1, s, 1).

(v) The number of times that (z1, z2, z3) appears as a row in the subarray (a1 ⊕ dj1 , a2 ⊕ dj2 , a3 ⊕ dj3)

is equal to the number of pairs
(X,x) ∈ [GF(s)]n × {1, . . . , λs}

such that
XTl1 + dx,j1 = z1, XTl2 + dx,j2 = z2, XTl3 + dx,j3 = z3. (A.9)

Due to the linearly independence of l1, l2 and l3 over GF(s), for each x ∈ {1, 2, . . . , λs}, we have three
independent equations in X in (A.9), which leads to sn−3 solutions. Since there are λs choices for x,
there are λsn−2 solutions to (A.9). This implies that

(a1 ⊕ dj1 , a2 ⊕ dj2 , a3 ⊕ dj3)

is an OA(λsn+1, 3, s, 3). This completes the proof.

Proof of Theorem 3.2. The numbers of columns in A(1), . . . , A(5) are

(sn−2 − 1)/(s− 1)− ((s− 1)n−2 − 1)/(s− 2), ((s− 1)n−2 − 1)/(s− 2),

sn−2 − 2(s− 1)n−2 + (s− 2)n−2, (s− 1)n−2 − (s− 2)n−2

and (s− 1)n−2, respectively. Then A in (3.5) does have the required number of factors. Suppose that a1
and a2 are any two distinct columns of A, and b1 is the column corresponding to a1 in B. In the sequel,
we show that (a1, b1, a2) is an OA(3) in all possible cases. Define G = GF(s).

(i) a1 = a
(1)
i ⊕ d1 ∈ A(1) ⊕ d1, b1 = a

(2)
i′ ⊕ d1 ∈ A(2) ⊕ d1 satisfying l

(2)
r,i′ equals 1 if l(1)r,i = αs−2 and 0

otherwise. Suppose
a2 = a

(k)
i2

⊕ dj2 ∈ A.

If a
(k)
i2

∈ {a(1)i , a
(2)
i′ }, (a1, b1, a2) is an OA(3) by Lemma A.1(iii). If l

(1)
i , l

(2)
i′ and l

(k)
i2

are linearly
independent over G, (a1, b1, a2) is an OA(3) by Lemma A.1(v). At last, if l(1)i , l(2)i′ and l

(k)
i2

are linearly
dependent over G, there are nonzero elements β, β′ ∈ G satisfying l

(k)
i2

= βl
(1)
i + β′l

(2)
i′ . Since the first

nonzero element of l(k)i2
is 1, we have β = 1 and l

(k)
1,i2

= 0. For any 1 ⩽ j ⩽ n− 1, if l(1)j,i = αs−2,

l
(k)
j,i2

= l
(1)
j,i + β′l

(2)
j,i′ ̸= αs−2;

otherwise l
(k)
j,i2

= l
(1)
j,i ̸= αs−2. This means αs−2 /∈ l

(k)
i2

and a
(k)
i2

∈ A(2). Since a2 = a
(k)
i2

⊕ dj2 ∈ A, we have
2 ⩽ j2 ⩽ c. Then dj2 − βd1 − β′d1 = dj2 is an OA(λs, 1, s, 1), implying that (a1, b1, a2) is an OA(3) by
Lemma A.1(iv).

(ii) a1 = a
(3)
i ⊕ d1 ∈ A(3) ⊕ d1, b1 = a

(2)
i′ ⊕ d1 satisfying l

(2)
r,i′ , r > 1 equals 1 if l(1)r,i = 1 and 0 otherwise.

Similar to (i), for any a2 = a
(k)
i2

⊕ dj2 ∈ A, we only consider

l
(k)
i2

= βl
(3)
i + β′l

(2)
i′
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for some nonzero elements β, β′ ∈ G. As the first nonzero entry of l(k)i2
is 1, we have β = 1, l(k)1,i2

= 1 and
(l

(k)
2,i2

, . . . , l
(k)
n−1,i2

) contains αs−2 but not 1. Then a
(k)
i2

∈ A(4). The fact that a2 = a
(k)
i2

⊕ dj2 ∈ A indicates
2 ⩽ j2 ⩽ c. By Lemma A.1(iv), (a1, b1, a2) is an OA(3).

(iii) a1 = a
(5)
i ⊕ d1 ∈ A(5) ⊕ d1 and b1 = a

(5)
i ⊕ d2. For any a2 = a

(k)
i2

⊕ dj2 ∈ A, it is not hard to see
that a

(k)
i2

̸= a
(5)
i . By Lemma A.1(iii), (a1, b1, a2) is an OA(3).

(iv) a1 = a
(k)
i ⊕ dj ∈ (A(1), A(2))⊕ (d2, . . . , dc), b1 = a

(4)
i′ ⊕ d1 satisfying l

(4)
r,i′ , r > 1 equals 0 if l(k)r,i = 0

and αs−2 otherwise. Suppose
a2 = a

(k2)
i2

⊕ dj2 ∈ A.

Similarly, we only need to consider
l
(k2)
i2

= βl
(k)
i + β′l

(4)
i′

for some nonzero elements β, β′ ∈ G. Since the first nonzero element of l
(k2)
i2

is 1, we have β′ = 1,
lk2
1,i2

= 1 and αs−2 /∈ l
(k2)
i2

. Thus a
(k2)
i2

∈ A(5). As a2 = a
(k2)
i2

⊕ dj2 ∈ A, we obtain j2 = 1. Note that
dj2 − βdj − β′d1 = −βdj is an OA(λs, 1, s, 1). By Lemma A.1(iv), (a1, b1, a2) is an OA(3).

(v) a1 = a
(k)
i ⊕ dj ∈ (A(3), A(4))⊕ (d2, . . . , dc), b1 = a

(2)
i′ ⊕ d1 satisfying l

(2)
r,i′ equals 1 if l(k)r,i = αs−2 and

0 otherwise. If a2 = a
(k2)
i2

⊕ dj2 ∈ A, similar to (i), it suffices to consider that

l
(k2)
i2

= βl
(k)
i + β′l

(2)
i′

for some nonzero β, β′ ∈ G. Since the first nonzero element of l
(k2)
i2

is 1, we have β = 1, l
(k2)
1,i2

= 1

and αs−2 ̸∈ l
(k2)
i2

. This means a
(k2)
i2

∈ A(5). Then the fact that a2 = a
(k2)
i2

⊕ dj2 ∈ A implies j2 = 1.
By noting that dj2 − βdj − β′d1 = −dj is an OA(λs, 1, s, 1), we see that (a1, b1, a2) is an OA(3) from
Lemma A.1(iv).

Now we are going to prove Theorem 3.10. We first introduce some definitions in projective geometry
and show Propositions A.2–A.4. These propositions are needed for proving Theorem 3.10. Recall that
GF(s) = {α0, α1, . . . , αs−1} is a Galois field of order s, where α0 = 0, α1 = α is a primitive element of
GF(s), and α2 = α2, . . . , αs−1 = αs−1 = 1, and l1, . . . , lr where r = (sn − 1)/(s − 1) are all the vectors
in [GF(s)]n whose first nonzero element is 1. In the language of projective geometry, li and αkli, k > 0

represent the same point and the s+1 points li, lj (j ̸= i), li+α1lj , . . . , li+αs−1lj form a line. It can be
verified that among the s + 1 points of any line, there are s points whose first nonzero elements appear
at the same position, and one last point whose first nonzero element appears at a later position. Let l1
and l2 be any two of these s points. When restricting the first nonzero element of each point to be 1,
the s + 1 points in the same line can be rewritten as l1, l2, li = αi−2l1 + (1 − αi−2)l2, i = 3, . . . , s, and
ls+1 = (lp,1 − lp,2)

−1(l1 − l2), where lk,i denotes the k-th entry of li and p is the smallest k such that
lk,1 ̸= lk,2.
Proposition A.2. For the above points l1, . . . , ls+1, we have

(i) lk,i − lk,j = ls+1,k(lp,i − lp,j) for any 1 ⩽ i < j ⩽ s and 1 ⩽ k ⩽ n;

(ii) lk,s+1 ̸= 0 if and only if {lk,1, . . . , lk,s} is a permutation of all the elements in GF(s);

(iii) lk,s+1 = 0 if and only if lk,1 = · · · = lk,s.
Proof. Let β = lp,1 − lp,2. Then β ̸= 0 and simple calculation shows l1 = l2 + βls+1 and li =

l2 + αi−2βls+1 for i = 3, . . . , s. This means

lk,1 = lk,2 + βlk,s+1 and lk,i = lk,2 + αi−2βlk,s+1 (A.10)

for any 3 ⩽ i ⩽ s and 1 ⩽ k ⩽ n. Also, note that lp,s+1 = 1. Proposition A.2(i) immediately follows. It is
seen that lk,1 = lk,2 if and only if lk,s+1 = β(lk,1 − lk,2) = 0. We also find from (A.10) that if lk,s+1 = 0,
lk,1 = · · · = lk,s; otherwise, lk,1, . . . , lk,s are pairwise distinct. Hence (ii) and (iii) in Proposition A.2
follow.
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Proposition A.3. Suppose that both l1 = (0, l2,1, . . . , ln,1)
T and l2 = (1, l2,2, . . . , ln,2)

T do not contain
αs−2. Then among the other s − 1 points in the line formed by l1 and l2, there exists a point li =

(l1,i, . . . , ln,i)
T satisfying one of the following two properties:

(i) l1,i = 1, and (l2,i, . . . , ln,i) does not contain αs−2;

(ii) l1,i = 1, and (l2,i, . . . , ln,i) contains both 1 and αs−2.
Proof. Let li = l2 + αi−2l1 for i = 3, . . . , s+ 1. Then the points l1, . . . , ls+1 form a line. Denote by lk,i
the k-th entry of li. Then l1,1 = 0 and l1,i = 1 for i = 2, . . . , s + 1. Let u = {k > 1 : lk,1 ̸= 0}. Assume
first that there exists an integer k ∈ u such that lk,2 ̸= 1. By Proposition A.2(ii), there must be a point
li, i ⩾ 3 such that lk,i = 1. This indicates that (l2,i, . . . , ln,i) contains 1. If αs−2 ∈ li, li satisfies (ii).
Otherwise, li satisfies (i). Next, we consider the case lk,2 = 1 for all k ∈ u. Select li = l2 + (1 − α)l1.
Since lk,1 ̸= αs−2 for all k, we have lk,i = lk,2 + (1 − α)lk,1 ̸= αs−2 for all k ∈ u. Note that lk,1 = 0 for
all k /∈ u and lk,2 ̸= αs−2 for all k. By Proposition A.2(iii), we also have lk,i = lk,2 ̸= αs−2 for all k /∈ u.
Hence li satisfies condition (i). This completes the proof.

Proposition A.4. Suppose that (l2,1, . . . , ln,1) does not contain αs−2 and (l2,2, . . . , ln,2) contains αs−2

but not 1. Then among the other s − 1 points in the line formed by l1 = (1, l2,1, . . . , ln,1)
T and l2 =

(1, l2,2, . . . , ln,2)
T, there exists a point li = (l1,i, . . . , ln,i)

T satisfying one of the following three properties:
(i) l1,i = 0, and (l2,i, . . . , ln,i) contains αs−2;

(ii) l1,i = 1, and (l2,i, . . . , ln,i) does not contain αs−2;

(iii) l1,i = 1, and (l2,i, . . . , ln,i) contains both 1 and αs−2.
Proof. Let li = αi−2l1 + (1 − αi−2)l2 for i = 3, . . . , s and ls+1 = (lp,1 − lp,2)

−1(l1 − l2), where lk,i is
the k-th entry of li and p is the smallest k such that lk,1 ̸= lk,2. Then the points l1, . . . , ls+1 form a
line, l1,1 = · · · = l1,s = 1 and l1,s+1 = 0. Let u = {k > 1 : lk,1 ̸= lk,2}, u1 = {k > 1 : lk,1 = 1} and
u2 = {k > 1 : lk,2 = αs−2}. Then p ∈ u. Because αs−2 /∈ l1 and (l2,2, . . . , ln,2) contains αs−2 but not 1,
we have u1 ⊂ u, u2 ⊂ u and u2 ̸= ∅.

Suppose u \u1 ̸= ∅. Take k0 ∈ u \u1, and then k0 > 1, lk0,1 ̸= lk0,2 and lk0,1 ̸= 1. It is also known that
lk0,2 ̸= 1. By Proposition A.2(ii), there exists a point li, 3 ⩽ i ⩽ s such that lk0,i = 1. Since l1,i = 1, we
have li satisfies (iii) if αs−2 ∈ li and (ii) otherwise.

Consider the case of u = u1. Note that l1,s+1 = 0. If αs−2 ∈ ls+1, ls+1 satisfies (i). Otherwise,
lk,s+1 ̸= αs−2 for all k. Since lk,1 = 1 for all k ∈ u, by Proposition A.2(i),

lk,i − 1 = lk,s+1(lp,i − 1) (A.11)

for all 2 ⩽ i ⩽ s and all k ∈ u. If p ∈ u2, lp,2 = αs−2. By noting (1 − αs−2)(1 − α) ̸= 0, we obtain
αs−2 ̸= 1 + 1 − α, which means lp,2 ̸= 1 + 1 − α. If p /∈ u2, taking k0 ∈ u2, we have k0 > 1, k0 ̸= p and
lk0,2 = αs−2. Because u2 ⊂ u = u1 and p ∈ u, we have lk0,1 = lp,1 = 1. As lk0,s+1 /∈ {0, αs−2}, we obtain
again

lp,2 = l−1
k0,s+1(lk0,2 − 1) + 1 ̸= 1 + 1− α

from (A.11). Note also that lp,1 = 1 ̸= 1 + 1 − α and lp,1 ̸= lp,2. By Proposition A.2(ii), there exist a
point li0 , 3 ⩽ i0 ⩽ s satisfying lp,i0 = 1+ 1− α. Since lk,s+1 ̸= αs−2 for all k, it follows from (A.11) that

lk,i0 = lk,s+1(lp,i0 − 1) + 1 ̸= αs−2

for all k ∈ u. When k /∈ u, lk,1 = lk,2 implies lk,s+1 = 0. By Proposition A.2(iii), we find

lk,i0 = lk,1 ̸= αs−2

for all k /∈ u. Hence, li0 satisfies (ii). This completes the proof.
Now we turn to the proof of Theorem 3.10. Use the notations in Subsection 3.1. Recall that the

constructed design A in Theorem 3.2 is a subarray of the base orthogonal array D1 in (3.4). Combining
(3.3)–(3.5), we see that the complement design of A is

Ā = D1 \A = (0sn−1 ⊕H,A(2) ⊕ d1, A
(4) ⊕ d1, A

(5) ⊕ (d2, . . . , dc)). (A.12)

So we correspondingly split the proof of Theorem 3.10 into the following Lemmas A.5–A.8.
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Lemma A.5. For the constructed design A in Theorem 3.2, the column 0sn−1 ⊕ H cannot be added
to A.
Proof. Let a = 0sn−1 ⊕H. It suffices to prove that for each column b ∈ Ā \ {a}, there exists a column
a1 ∈ A such that (a, b, a1) is not an OA(3). We have the following three cases:

• If b = a
(2)
i ⊕ d1 ∈ A(2) ⊕ d1, take a1 = a

(2)
i ⊕ d2.

• If b = a
(4)
i ⊕ d1 ∈ A(4) ⊕ d1, take a1 = a

(4)
i ⊕ d2.

• If b = a
(5)
i ⊕ dj ∈ A(5) ⊕ (d2, . . . , dc), take a1 = a

(5)
i ⊕ d1.

For all the cases, a1 ∈ A by (3.5) and (a, b, a1) is not an OA(3) by Lemma A.1(ii). This completes the
proof.

Lemma A.6. For the constructed design A in Theorem 3.2, no column in A(2)⊕d1 can be added to A.
Proof. It suffices to prove that for any column a = a

(2)
i ⊕ d1 and any column b ∈ Ā \ {a}, there exists

a column a1 ∈ A such that (a, b, a1) is not an OA(3). Since a
(2)
i ∈ A(2), we have l

(2)
1,i = 0 and αs−2 /∈ l

(2)
i .

If b = 0sn−1 ⊕ H, take a1 = a
(2)
i ⊕ d2. Then a1 ∈ A by (6). By Lemma A.1(ii), (a, b, a1) is not an

OA(3).
If b = a

(2)
i′ ⊕ d1 ∈ A(2) ⊕ d1, we have l

(2)
i′ ̸= l

(2)
i , l

(2)
1,i′ = 0 and αs−2 /∈ l

(2)
i′ . It is seen from

Proposition A.2(ii) that among the s + 1 points in any line, there exists at least one point containing
αs−2. Let l

(q)
i1

be such a point in the line formed by l
(2)
i and l

(2)
i′ . Since l

(2)
1,i = l

(2)
1,i′ = 0, we also have

l
(q)
1,i1

= 0, implying q = 1. Take a1 = a
(q)
i1

⊕ d1 ∈ A(1) ⊕ d1 ⊂ A. By Lemma A.1(iv), (a, b, a1) is not an
OA(3).

If b = a
(4)
i′ ⊕ d1 ∈ A(4) ⊕ d1, we have l

(4)
1,i′ = 1 and (l

(4)
2,i′ , . . . , l

(4)
n−1,i′) contains αs−2 but not 1. There

must be an integer k > 1 such that l
(2)
k,i = 1. Take β = 1 − l

(4)
k,i′ and l

(q)
i1

= l
(4)
i′ + βl

(2)
i . Then β ̸= 0 and

l
(q)
1,i1

= l
(q)
k,i1

= 1. So q = 3 if αs−2 ∈ l
(q)
i1

and q = 5 otherwise. Take

a1 = a
(q)
i1

⊕ d1 ∈ (A(3), A(5))⊕ d1 ⊂ A.

By Lemma A.1(iv), (a, b, a1) is not an OA(3).
If b = a

(5)
i′ ⊕ dj′ ∈ A(5) ⊕ (d2, . . . , dc), we have j′ > 1, l(5)1,i′ = 1 and αs−2 /∈ l

(5)
i′ . There must be an

integer k > 1 such that l
(2)
k,i = 1. Let β = αs−2 − l

(5)
k,i′ and l

(q)
i1

= l
(5)
i′ + βl

(2)
i . Then β ̸= 0, l

(q)
1,i1

= 1,
l
(q)
k,i1

= αs−2 and q ∈ {3, 4}. Let

a1 = a
(q)
i1

⊕ dj′ ∈ (A(3), A(4))⊕ (d2, . . . , dc) ⊂ A.

By Lemma A.1(iv), (a, b, a1) is not an OA(3).

Lemma A.7. For the constructed design A in Theorem 3.2, no column in A(4) ⊕ d1 can be added to
A, provided that D0 possesses the property δ.
Proof. It suffices to prove that for any column a = a

(4)
i ⊕ d1 ∈ A(4) ⊕ d1 and any column b ∈ Ā \ {a},

there exists a column a1 ∈ A such that (a, b, a1) is not an OA(3). Since a
(4)
i ∈ A(4), we have l

(4)
1,i = 1 and

(l
(4)
2,i , . . . , l

(4)
n−1,i) contains αs−2 but not 1.

If b = 0sn−1 ⊕H, take
a1 = a

(4)
i ⊕ d2 ∈ A(2) ⊕ d2 ⊂ A.

By Lemma A.1(ii), (a, b, a1) is not an OA(3).
If b ∈ A(2) ⊕ d1, as in the proof of Lemma A.6, we have shown that for any two columns a ∈ A(2) ⊕ d1

and b ∈ A(4) ⊕ d1, there exists a column a1 ∈ A such that (a, b, a1) is not an OA(3). So the proof of this
case is omitted.

If b = a
(4)
i′ ⊕ d1 ∈ A(4) ⊕ d1, we have i′ ̸= i, l(4)1,i′ = 1, and (l

(4)
2,i′ , . . . , l

(4)
n−1,i′) contains αs−2 but not 1.

There must be an integer k > 1 so that l
(4)
k,i ̸= l

(4)
k,i′ . Since l

(4)
k,i ̸= 1 and l

(4)
k,i′ ̸= 1, by Proposition A.2(ii),
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there exists a point l
(q)
i1

= βl
(4)
i + (1 − β)l

(4)
i′ such that l

(q)
k,i1

= 1. As l
(q)
1,i1

= βl
(4)
1,i + (1 − β)l

(4)
1,i′ = 1, we

have q = 3 if αs−2 ∈ l
(q)
i1

and q = 5 otherwise. Take

a1 = a
(q)
i1

⊕ d1 ∈ (A(3), A(5))⊕ d1 ⊂ A.

By Lemma A.1(iv), (a, b, a1) is not an OA(3).
If b = a

(5)
i′ ⊕ dj′ ∈ A(5) ⊕ (d2, . . . , dc), we have j′ > 1, l(5)1,i′ = 1 and αs−2 /∈ l

(5)
i′ . Let

l
(q)
i1

= β(l
(4)
i − l

(5)
i′ ),

where β ∈ GF(s) is the element such that the first nonzero element of l
(q)
i1

is 1. Then l
(q)
1,i1

= 0 and
q ∈ {1, 2}. Since D0 has the property δ, take j1 so that dj1 + βdj′ is not an OA(λs, 1, s, 1). As d1 = 0λs
and βdj′ is an OA(λs, 1, s, 1), we have j1 > 1. Take

a1 = a
(q)
i1

⊕ dj1 ∈ (A(1), A(2))⊕ dj1 ⊂ A.

By Lemma A.1(iv), (a, b, a1) is not an OA(3).

Lemma A.8. For the constructed design A in Theorem 3.2, no column in A(5) ⊕ (d2, . . . , dc) can be
added to A, provided that D0 possesses the property δ.
Proof. Suppose

a = a
(5)
i1

⊕ dj1 ∈ A(5) ⊕ (d2, . . . , dc).

Then we have j1 > 1, l(5)1,i1
= 1 and αs−2 /∈ l

(5)
i1

. Take

a1 = a
(5)
i1

⊕ d1 ∈ A(5) ⊕ d1 ⊂ A.

We show that a and a1 cannot be included by A at the same time. It suffices to prove that for any column
b1 ∈ Ā \ {a}, (a1, b1, a) is not an OA(3), or there exists a column a2 ∈ A \ {a1}, such that (a1, b1, a2) is
not an OA(3).

If b1 = 0sn−1 ⊕H, (a1, b1, a) is not an OA(3) by Lemma A.1(ii).
If b1 = a

(2)
i ⊕ d1 ∈ A(2) ⊕ d1, we have l

(2)
1,i = 0 and αs−2 /∈ l

(2)
i . From Proposition A.3, among the

other s − 1 points in the line formed by l
(5)
i1

and l
(2)
i , there must be a point, i.e., l(q)i2

, satisfying (i) or
(ii) in Proposition A.3. More precisely, q = 5 if l(q)i2

satisfies Proposition A.3(i) and q = 3 if l(q)i2
satisfies

Proposition A.3(ii). Take
a2 = a

(q)
i2

⊕ d1 ∈ (A(3), A(5))⊕ d1 ⊂ A.

By Lemma A.1(iv), (a1, b1, a2) is not an OA(3).
If b1 = a

(4)
i ⊕ d1 ∈ A(4) ⊕ d1, we have l

(4)
1,i = 1, and (l

(4)
2,i , . . . , l

(4)
n−1,i) contains αs−2 but not 1. From

Proposition A.4, among the other s− 1 points in the line formed by l
(5)
i1

and l
(4)
i , there must be a point,

i.e., l(q)i2
, satisfying (i), (ii) or (iii) in Proposition A.4, indicating q = 1, q = 5 or q = 3, respectively. Take

a2 = a
(q)
i2

⊕ d1 ∈ (A(1), A(3), A(5))⊕ d1 ⊂ A.

By Lemma A.1(iv), (a1, b1, a2) is not an OA(3).
If b1 = a

(5)
i ⊕ dj ∈ A(5) ⊕ (d2, . . . , dc), we have j > 1, l(5)1,i = 1 and αs−2 /∈ l

(5)
i . If i = i1, (a1, b1, a) is

not an OA(3) by Lemma A.1(iii). Otherwise, let l
(q)
i2

= β(li1 − li), where β ∈ GF(s) is the element such
that the first nonzero element of l(q)i2

is 1. Then l1,i2 = 0 and q ∈ {1, 2}. As D0 has the property δ, take
j2 so that dj2 + βdj is not an OA(λs, 1, s, 1). Because d1 = 0λs and βdj is an OA(λs, 1, s, 1), we have
j2 > 1. Take

a2 = a
(q)
i2

⊕ dj2 ∈ (A(1), A(2))⊕ dj2 ⊂ A.

By Lemma A.1(iv), (a1, b1, a2) is not an OA(3).
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Proof of Theorem 3.10. Combining Lemmas A.5–A.8, we see that Theorem 3.10 immediately
follows.

Proof of Corollary 3.3. For any prime power s, [12, Theorem 6.6, Corollary 6.39 and Theorem 6.63]
illustrates the existence of the difference schemes D(s, s, s), D(2s, 2s, s) and D(4s, 4s, s), respectively,
based on GF(s). [12, Theorem 6.64] shows that a difference scheme D((s− 1)ks, (s− 1)ks, s) exists when
s− 1 is a prime power and k is a positive integer.

Proof of Theorem 4.2. Because A and B are subarrays of Hq without repeated columns, and the
matrices in (4.7) and (4.10) have 2csn−2k−1 − 1 and c(s − 3)sn−2k−1 + 1 columns, respectively, both
A and B are OA(2) with the required number of columns. Let a′1 and a′2 be two distinct columns of A,
and b′1 be the column corresponding to a′1 in B. In the sequel, we show that (a′1, b

′
1, a

′
2) is an OA(3) in

all possible cases. Denote by hj the j-th columns of H0, where 1 ⩽ j ⩽ c(sn−2q−1 − 1)/(s− 1) + 1.
(i) Suppose that a′1 = 0s2k−2 ⊕ a1 ⊕ d

(n−2k)
j , where 1 ⩽ k ⩽ q and 2 ⩽ j ⩽ csn−2k−1. Then

b′1 = 0s2k−2 ⊕ a4 ⊕ d
(n−2k)
j .

If a′2 = 0s2q ⊕ hj2 , from Lemma A.1(ii), the array

V0 = [(a1, a4)⊕ d
(n−2k)
j , 0s2q−2k+2 ⊕ hj2 ]

is an OA(3), implying that (a′1, b
′
1, a

′
2) = 0s2k−2 ⊕ V0 is also an OA(3). Next, assume

a′2 = 0s2k2−2 ⊕ ai2 ⊕ d
(n−2k2)
j2

.

If 1 ⩽ k2 < k, Lemma A.1(i) implies

[ai2 ⊕ d
(n−2k2)
j2

, 0s2k−2k2 ⊕ (a1, a4)⊕ d
(n−2k)
j ]

is an OA(3). If k < k2 ⩽ q, Lemma A.1(ii) implies

[(a1, a4)⊕ d
(n−2k)
j , 0s2k2−2k ⊕ ai2 ⊕ d

(n−2k2)
j2

]

is an OA(3). So for both cases, (a′1, b′1, a′2) is an OA(3). Finally, we consider k2 = k. It suffices to prove
that

U = [(a1, a4)⊕ d
(n−2k)
j , ai2 ⊕ d

(n−2k)
j2

]

is an OA(3). If ai2 ∈ {a1, a4}, Lemma A.1(iii) implies U is an OA(3). If ai2 = a2, we have j2 > 1. It is
seen that l2 = l4 − l1 and

d
(n−2k)
j2

− d
(n−2k)
j + d

(n−2k)
j = d

(n−2k)
j2

is an OA(λsn−2k, 1, s, 1). If ai2 = a3, we have j2 = 1. It is seen that l3 = l4 − αs−2l1 and

d
(n−2k)
j2

− d
(n−2k)
j + αs−2d

(n−2k)
j = (αs−2 − 1)d

(n−2k)
j

is an OA(λsn−2k, 1, s, 1). By Lemma A.1(iv), U is an OA(3) for both cases.
(ii) If a′1 = 0s2k−2 ⊕ a2 ⊕ d

(n−2k)
j where 1 ⩽ k ⩽ q and 2 ⩽ j ⩽ csn−k−1, we have

b′1 = 0s2k−2 ⊕ a3 ⊕ d
(n−2k)
j .

Similar to (i), it suffices to consider that a′2 = 0s2k−2 ⊕ ai2 ⊕ d
(n−2k)
j2

with ai2 /∈ {a2, a3}. This means
ai2 = a1 and j2 > 1. Note that l1 = (l2 − l3)/(αs−2 − 1) and

dj2 − (dj − dj)/(αs−2 − 1) = dj2

is an OA(λsn−2k, 1, s, 1). By Lemma A.1(iv), [(a2, a3)⊕d
(n−2k)
j , ai2 ⊕d

(n−2k)
j2

] is an OA(3), implying that
(a′1, b

′
1, a

′
2) is also an OA(3).
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(iii) If a′1 = 0s2k−2 ⊕ a3 ⊕ d
(n−2k)
1 , we have b′1 = 0s2k−2 ⊕ a2 ⊕ d

(n−2k)
1 . Similar to (i), it suffices to

consider that a′2 = 0s2k−2 ⊕ ai2 ⊕ d
(n−2k)
j2

with ai2 /∈ {a2, a3}. Then ai2 = a1 and j2 > 1. Similar to (ii),
(a′1, b

′
1, a

′
2) is an OA(3).

(iv) Assume a′1 = 0s2q ⊕ hj . Then b′1 = 0s2k−2 ⊕ ai1 ⊕ d
(n−2k)
j1

satisfying ai1 /∈ {a1, a2, a3}. If
a′2 = 0s2q⊕hj2 where j2 ̸= j, we have that [ai1⊕d

(n−2k)
j1

, 0s2q−2k+2⊕(hj , hj2)] is an OA(3) by Lemma A.1(i),
implying that (a′1, b

′
1, a

′
2) is also an OA(3). Assume a′2 = 0s2k2−2 ⊕ ai2 ⊕ d

(n−2k2)
j2

. Then we must have
ai2 ∈ {a1, a2, a3}, indicating ai2 ̸= ai1 . If k2 = k, Lemma A.1(ii) implies that

[0s2q−2k+2 ⊕ hj , ai1 ⊕ d
(n−2k)
j1

, ai2 ⊕ d
(n−2k)
j2

]

is an OA(3). So (a′1, b
′
1, a

′
2) is an OA(3). If 1 ⩽ k2 < k, since (ai1 ⊕ d

(n−2k)
j1

, 0s2q−2k+2 ⊕ hj) is an OA(2),

[ai2 ⊕ d
(n−2k2)
j2

, 0s2k−2k2 ⊕ (ai1 ⊕ d
(n−2k)
j1

, 0s2q−2k+2 ⊕ hj)]

is an OA(3) by Lemma A.1(i). Hence, (a′1, b′1, a′2) is an OA(3). For k < k2 ⩽ q, the proof is similar and
thus omitted.

Proof of Corollary 4.3. It is seen that q∗ = q0 = 1 for 3 ⩽ n ⩽ 4. So it suffices to consider the case of
n ⩾ 5.

(i) For s = 3, the formula of mq0 follows directly from (4.9) and (4.11). For any 2 ⩽ q ⩽ q0,

mq −mq−1 = 2c · 3n−2q−1 − 1 + rq − rq−1.

Note that n ⩾ 2q + 1 if n is odd and n ⩾ 2q + 2 otherwise. Since n ⩽ 4(c + 1), it follows that rq ⩾ 1,
rq−1 = q − 1 and q ⩽ 2c+ 1. So mq −mq−1 ⩾ 2c− q + 1 ⩾ 0, implying q∗ = q0.

(ii) For s > 3, we have r1 = c(sn−3 − 1)/(s− 1) + 1 and

mq = (2csn−3 − 1) + (2csn−5 − 1) + · · ·+ (2csn−2q−1 − 1) + rq

< (2csn−3 − 1) + (csn−4 + csn−5 + · · ·+ csn−2q−1) + c(sn−2q−1 − 1)/(s− 1) + 1

= (2csn−3 − 1) + c(sn−3 − 1)/(s− 1) + 1 = m1

for any 2 ⩽ q ⩽ q0. Hence q∗ = 1.

Proof of Theorem 5.1. Note that when the s2 levels are collapsed into s levels by ⌊x/s⌋ for x ∈ Zs2 ,
the design D becomes ϕ(A). So π(D) is actually the proportion of strength-three subarrays in all three-
column subarrays of A. From the definition of A in (3.5), when n = 3, we have

A = [(A(2), A(4))⊕ (d2, . . . , dc), A
(5) ⊕ d1], (A.13)

where A(2) and A(4) are s2-vectors generated by (0, 1)T and (1, αs−2)
T, respectively, and A(5) is an

s2 × (s − 1) matrix whose columns are generated by vectors (1, β)T with β ̸= αs−2. Without loss of
generality, assume that

U = (a1 ⊕ dj1 , a2 ⊕ dj2 , a3 ⊕ dj3) (A.14)

is a strength-three subarray of A. Denote by l1, l2 and l3 the generator columns of a1, a2 and a3,
respectively.

(i) Consider first a2 = a3. Without loss of generality, assume j2 ⩽ j3. Then (A.13) implies a2, a3 ∈
(A(2), A(4)) and 1 < j2 < j3 ⩽ c. By Lemma A.1(iii), U is an OA(3) if and only if a1 ̸= a2. Only two cases
need to be considered: (a) a1 ∈ (A(2), A(5)) and a2 = a3 = A(4); (b) a1 ∈ (A(4), A(5)) and a2 = a3 = A(2).
For each case, there are (s + c − 2) and

(
c−1
2

)
choices for (a1, j1) and (j2, j3), respectively. So there are

(s+ c− 2)(c− 1)(c− 2) choices for U .
(ii) Assume that a1, a2 and a3 are distinct and j1 = j2 = 1. Then (A.13) implies a1, a2 ∈ A(5). Note

that l1, l2 and l3 are linearly dependent when n = 3. By Lemma A.1(iv), U is an OA(3) if and only
if j3 > 1. Hence a3 ∈ (A(2), A(4)). Then there are

(
s−1
2

)
, 2 and c − 1 choices for (a1, a2), a3 and j3,

respectively. So there are (s− 1)(s− 2)(c− 1) choices for U .
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(iii) Assume that a1, a2 and a3 are distinct and 1 = j1 < j2 ⩽ j3 ⩽ c. Then a1 ∈ A(5), a2, a3 ∈
(A(2), A(4)) and l1 = (1, β′)T with β′ ̸= αs−2. Note that

l3 = β1l1 + β2l2 (A.15)

for some nonzero β1, β2 ∈ GF(s). By Lemma A.1(iv), U is an OA(3) if and only if dj3 − β2dj2 is an
OA(λs, 1, s, 1).

If j2 = j3, we must have β2 ̸= 1. There are c− 1 and s− 2 choices for j2 and β2, respectively. So there
are (c− 1)(s− 2) choices for U .

Next, we consider the case where j2 < j3 and β2 = 1. In this case, dj3 − β2dj2 is an OA(λs, 1, s, 1). If
a2 ∈ A(2), we have a3 ∈ A(4), l2 = (0, 1)T and l3 = (1, αs−2)

T. From (A.15), we have

1 = β1 and αs−2 = β1β
′ + 1. (A.16)

So β′ = αs−2 − 1 ̸= αs−2, as desired. There are
(
c−1
2

)
choices for (j2, j3). So there are

(
c−1
2

)
choices for

U . If a2 ∈ A(4), we have a3 ∈ A(2), l2 = (1, αs−2)
T and l3 = (0, 1)T. From (A.15), we have

0 = β1 + 1 and 1 = β1β
′ + αs−2. (A.17)

It is obtained again that β′ = αs−2−1 ≠ αs−2 and there are
(
c−1
2

)
choices for U . So there are (c−1)(c−2)

choices for U in (A.14) when 1 = j1 < j2 < j3 ⩽ c and β2 = 1.
At last, we consider j2 < j3 and β2 ̸= 1. Then β2 ∈ GF(s) \ {0, 1}. If a2 ∈ A(2), we have a3 ∈ A(4),

l2 = (0, 1)T and l3 = (1, αs−2)
T. From (A.15), we have

1 = β1 and αs−2 = β1β
′ + β2. (A.18)

This indicates β′ = αs−2 − β2 ̸= αs−2, as required. So for each β2 /∈ {0, 1}, U is an OA(3) provided
that dj3 − β2dj2 is an OA(λs, 1, s, 1). This means that the number of choices for U in (A.14) is ω0. If
a2 ∈ A(4), we have a3 ∈ A(2), l2 = (1, αs−2)

T and l3 = (0, 1)T. Then (A.15) implies

0 = β1 + β2 and 1 = β1β
′ + β2αs−2. (A.19)

Then β′ = αs−2 − β−1
2 ̸= αs−2, as desired. So the number of choices for U is ω0 again.

From (A.13), it is impossible that j1, j2 and j3 all exceed 1. Note that A in (A.13) has 2c + s − 3

factors. Combining (i)–(iii), we see that the desired result follows.
Proof of Theorem 5.2. For n = 3, the fact that 1 ⩽ q ⩽ ⌊(n− 1)/2⌋ implies q = 1. Similar to the proof
of Theorem 5.1, π(D) is actually the proportion of strength-three subarrays in all three-column subarrays
of A. Let U = (u1, u2, u3) be a strength-three three-column subarray of A. When n = 3, we have

A = [(a1, a2)⊕ (d
(1)
2 , . . . , d(1)c ), a3 ⊕ d

(1)
1 , 0λs2 ⊕ v]. (A.20)

It is seen that A has 2c factors.
Consider first that u3 = 0λs2 ⊕ v. Then we can define u1 = ai ⊕ d

(1)
j and u2 = ai′ ⊕ d

(1)
j′ . By

Lemma A.1(ii), U is an OA(3) if and only if ai ̸= ai′ . Two cases need to be considered: (a) ai = a1 and
ai′ = a2; (b) ai ∈ {a1, a2} and ai′ = a3. For the two cases, there are altogether (c2 − 1) choices for U to
be an OA(3).

Next, assume u1 = ai ⊕ d
(1)
j1

, u2 = ai ⊕ d
(1)
j2

and u3 = ai′ ⊕ d
(1)
j3

. By Lemma A.1(iii), U is an OA(3) if
and only if ai ̸= ai′ . If ai ∈ {a1, a2} and ai′ = a3, there are (c−1)(c−2) choices for U . If ai, a′i ∈ {a1, a2},
there are (c− 1)2(c− 2) choices for U . So the total number of choices is c(c− 1)(c− 2).

At last, we consider u1 = a1 ⊕ d
(1)
j1

, u2 = a2 ⊕ d
(1)
j2

and u3 = a3 ⊕ d
(1)
1 . Note that l3 = (1−αs−2)l1 + l2.

By Lemma A.1(iv), U is an OA(3) if and only if d(1)j2
− (αs−2 − 1)d

(1)
j1

is an OA(λs, 1, s, 1). There are w1

choices for (j1, j2). So there are w1 choices for U .
Combining the above facts, we see that the total number of choices for U is (c − 1)(c2 − c + 1) + ω1.

So the desired result in (5.2) follows. When s = 3, αs−2 = 2. Then d
(1)
j′ − d

(1)
j is an OA(λs, 1, s, 1) if and

only if j ̸= j′. Hence ω1 = (c− 1)(c− 2) and π(D) = (3c2 − 3)/(4c2 − 2c).
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Appendix B Small difference schemes used for constructing strong orthogo-
nal arrays

Table B.1 displays the seven small order difference schemes utilized in this paper. The scheme D(s, s, s)

is the s × s multiplication table of the field GF(s) for s = 4 and s = 5. The schemes D(6, 6, 3) and
D(10, 10, 5) are obtained from Tables 6.37 and 6.35 in [12], respectively, while D(8, 8, 4) is derived from
[12, Theorem 6.6]. The scheme D(12, 12, 3) is sourced from [23], whereas D(12, 12, 4) is sourced from [22],
with the original symbols 00, 01, 10 and 11 converted to 0, 1, x and 1 + x.

Table B.1 Difference schemes D(4, 4, 4), D(5, 5, 5), D(6, 6, 3), D(8, 8, 4), D(10, 10, 5), D(12, 12, 3) and D(12, 12, 4)

D(4, 4, 4)

0 0 0 0

0 1 + x 1 x

0 1 x 1 + x

0 x 1 + x 1

D(5, 5, 5)

0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

D(6, 6, 3)

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

D(8, 8, 4)

0 0 0 0 0 0 0 0

0 1 + x 1 + x 1 0 x 1 x

0 1 + x 1 0 x 1 x 1 + x

0 1 0 x 1 x 1 + x 1 + x

0 0 x 1 x 1 + x 1 + x 1

0 x 1 x 1 + x 1 + x 1 0

0 1 x 1 + x 1 + x 1 0 x

0 x 1 + x 1 + x 1 0 x 1

D(10, 10, 5)

0 0 0 0 0 0 0 0 0 0
0 4 3 1 2 1 0 4 2 3
0 3 1 2 4 4 2 0 1 3
0 1 2 4 3 1 2 3 0 4
0 2 4 3 1 4 1 3 2 0
0 2 3 2 3 0 4 1 4 1
0 1 1 3 0 2 4 4 3 2
0 0 4 4 2 3 3 1 1 2
0 3 0 1 1 2 3 2 4 4
0 4 2 0 4 3 1 2 3 1

D(12, 12, 3)

0 0 0 1 1 0 0 1 0 2 2 0
0 0 0 0 2 0 2 0 2 0 0 1
0 0 1 0 0 2 1 2 0 0 1 0
0 0 2 2 0 1 0 0 1 1 0 0
0 1 2 2 0 0 1 1 2 0 2 2
0 1 2 1 2 1 2 2 2 2 1 0
0 1 0 0 2 2 0 2 1 1 2 2
0 1 1 2 1 2 2 0 0 2 0 2
0 2 1 2 1 0 0 2 2 1 1 1
0 2 1 0 0 1 2 1 1 2 2 1
0 2 2 1 2 2 1 1 0 1 0 1
0 2 0 1 1 1 1 0 1 0 1 2

D(12, 12, 4)

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 + x 1 + x 1 + x x x x

0 0 0 1 + x 1 + x 1 + x x x x 1 1 1

0 1 + x 1 x 1 1 + x 1 x 0 1 + x 0 x

0 1 + x 1 1 + x x 1 0 1 x x 1 + x 0

0 1 + x 1 1 1 + x x x 0 1 0 x 1 + x

0 1 x 1 + x 0 x 1 0 1 + x 1 1 + x x

0 1 x x 1 + x 0 1 + x 1 0 x 1 1 + x

0 1 x 0 x 1 + x 0 1 + x 1 1 + x x 1

0 x 1 + x 1 x 0 1 1 + x x 1 0 1 + x

0 x 1 + x 0 1 x x 1 1 + x 1 + x 1 0

0 x 1 + x x 0 1 1 + x x 1 0 1 + x 1
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